您现在的位置:首页 > 数学 >

2015-2016学年高中数学(人教A版必修三)课时作业:第1章 算法初步 单元检测 A卷


第一章
羆肄膆莀袂肃艿薆 螈肂莁荿

算法初步(A)
(时间:120 分钟

满分:150 分)

一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)

1.程序框图中 的功能是( )

A.算法的起始与结束

B.算法输入和输出信息

C.计算、赋值

D.判断条件是否成立

2.用二分法求方程 x2-10=0 的近似根的算法中要用哪种算法结构( )

A.顺序结构

B.条件结构

C.循环结构

D.以上都用

3.已知变量 a,b 已被赋值,要交换 a、b 的值,采用的算法是( )

A.a=b,b=a

B.a=c,b=a,c=b

C.a=c,b=a,c=a

D.c=a,a=b,b=c

4.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )

A.1

B.2

C.3

D.4

5.给出程序如下图所示,若该程序执行的结果是 3,则输入的 x 值是( )

INPUT x IF x>=0 y=x
ELSE y=-x
END IF PRINT y END

THEN

A.3

B.-3

C.3 或-3

D.0

6.下列给出的输入语句、输出语句和赋值语句:

(1)输出语句 INPUT a,b,c

(2)输入语句 INPUT x=3

(3)赋值语句 3=A

(4)赋值语句 A=B=C 则其中正确的个数是( ) A.0 个

B.1 个

C.2 个

D.3 个

7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构

() A.顺序结构

B.条件结构和循环结构

C.顺序结构和条件结构 D.没有任何结构 8.阅读下面的程序框图,则输出的 S 等于( )

A.14

B.20

C.30

D.55

9.将二进制数 110 101(2)转化为十进制数为( )

A.106

B.53

C.55

D.108

10.两个整数 1 908 和 4 187 的最大公约数是( )

A.51

B.43

C.53

D.67

11.运行下面的程序时,WHILE 循环语句的执行次数是( )

N=0

WHILE N<20 N=N+1 N=N*N
WEND PRINT N END

A.3

B.4

C.15

D.19

12.下图是把二进制数 11111(2)化成十进制数的一个程序框图,判断框内应填入的条件

是( )

A.i>5

B.i≤4

C.i>4

D.i≤5

题号

1

2

3

4

5

6

7

8

9 10 11 12

答案

二、填空题(本大题共 4 小题,每小题 5 分,共 20 分) 13.如果 a=123,那么在执行 b=a/10-a\10 后,b 的值是________.
14.给出一个算法:

根据以上算法,可求得 f(-1)+f(2)=________. 15.把 89 化为五进制数是________. 16.执行下边的程序框图,输出的 T=________.
三、解答题(本大题共 6 小题,共 70 分) 17.(10 分)分别用辗转相除法和更相减损术求 282 与 470 的最大公约数.
18.(12 分)画出计算 12+32+52+…+9992 的程序框图,并编写相应的程序.

19.(12 分)已知函数 f(x)=???x22x-2-15?x?<x≥0?,0?, 对每输入的一个 x 值,都得到相应的函数
值.画出程序框图并写出程序.
20.(12 分)用秦九韶算法计算 f(x)=2x4+3x3+5x-4 在 x=2 时的值.

21.(12 分)高一(2)班共有 54 名同学参加数学竞赛,现已有这 54 名同学的竞赛分数, 请设计一个将竞赛成绩优秀同学的平均分输出的程序(规定 90 分以上为优秀),并画出 程序框图.

22.(12 分)已知函数 f(x)=x2-5,写出求方程 f(x)=0 在[2,3]上的近似解(精确到 0.001) 的算法并画出程序框图.

第一章
1.B 2.D 3.D [由赋值语句知选 D.] 4.D [初值,S=2,n=1. 执行第一次后,S=-1,n=2, 执行第二次后,S=12,n=3, 执行第三次后,S=2,n=4. 此时符合条件,输出 n=4.]

算法初步(A)

5.C [该算法对应的函数为 y=|x|,已知 y=3,则 x=±3.] 6.A [(1)中输出语句应使用 PRINT; (2)中输入语句不符合格式 INPUT“提示内容”;变量; (3)中赋值语句应为 A=3; (4)中赋值语句出现两个赋值号是错误的.] 7.B [条件结构就是处理遇到的一些条件判断.算法的流程根据条件是否成立,有不 同流向,而循环结构中一定包含条件结构.] 8.C [由题意知:S=12+22+…+i2, 当 i=4 时循环程序终止, 故 S=12+22+32+42=30.] 9.B [110 101(2)=1×25+1×24+0×23+1×22+0×2+1×20=53.] 10.C [4 187=1 908×2+371,1 908=371×5+53,371=53×7,从而,最大公约数 为 53.] 11.A [解读程序时,可采用一一列举的形式: 第一次时,N=0+1=1;N=1×1=1; 第二次时,N=1+1=2;N=2×2=4; 第三次时,N=4+1=5;N=5×5=25.故选 A.] 12.C [S=1×24+1×23+1×22+1×21+1=(((2×1+1)×2+1)×2+1)×2+1(秦九 韶算法).循环体需执行 4 次后跳出,故选 C.] 13.0.3 解析 ∵a=123,∴a/10=12.3 又∵a\10 表示 a 除以 10 的商, ∴a\10=12. ∴b=a/10-a\10=12.3-12=0.3. 14.0
??4x, x≤0, 解析 f(x)=?
??2x, x>0,
∴f(-1)+f(2)=-4+22=0. 15.324(5) 16.30 解析 按照程序框图依次执行为 S=5,n=2,T=2; S=10,n=4,T=2+4=6; S=15,n=6,T=6+6=12; S=20,n=8,T=12+8=20; S=25,n=10,T=20+10=30>S, 输出 T=30. 17.解 辗转相除法: 470=1×282+188,

282=1×188+94,

188=2×94,

∴282 与 470 的最大公约数为 94.

更相减损术:

470 与 282 分别除以 2 得 235 和 141.

∴235-141=94,

141-94=47,

94-47=47,

∴470 与 282 的最大公约数为 47×2=94.

18.解 程序框图如下图:

程序:

19.解 程序框图:

S=0 i=1 WHILE i<=999
S=S+i∧2 i=i+2 WEND PRINT S END
程序为:

20.解 f(x)改写为 f(x)=(((2x+3)x+0)x+5)x-4, ∴v0=2, v1=2×2+3=7,

v2=7×2+0=14, v3=14×2+5=33, v4=33×2-4=62, ∴f(2)=62. 21.解 程序如下:

程序框图如下图:

S=0

M=0

i=1
DO INPUT x IF x>90 THEN M=M+1

S=S+x END IF LOOP UNTIL i>54 P=S/M PRINT P END

22.解 本题可用二分法来解决,设 x1=2,x2=3,m=x1+2 x2. 算法如下:

第一步:x1=2,x2=3; 第二步:m=(x1+x2)/2; 第三步:计算 f(m),如

果 f(m)=0,则输出 m;

如果 f(m)>0,则 x2=m, 第四步:若|x2- 步.

否则 x1=m; x1|<0.001,输出 m,否则返回第二

程序框图如图所示:

薈肅肄蒈 薄肄膆莀袂肃 艿薆



热文推荐
友情链接: 工作计划 总结汇报 团党工作范文 工作范文 表格模版 生活休闲